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[1] This paper describes a set of metrics for evaluating the simulation of clouds, radiation,
and precipitation in the present-day climate. As with the skill scores used to measure
the accuracy of short-term weather forecasts, these metrics are low-order statistical
measures of agreement with relevant, well-observed physical quantities. The metrics
encompass five statistical summaries computed for five physical quantities (longwave,
shortwave, and net cloud radiative effect, projected cloud fraction, and surface
precipitation rate) over the global climatological annual cycle. Agreement is measured
against two independent observational data sets. The metrics are computed for the models
that participated in the Coupled Model Intercomparison Project phase 3, which formed the
basis for the Fourth Assessment of the IPCC. Model skill does not depend strongly on
the data set used for verification, indicating that observational uncertainty does not
limit the ability to assess model simulations of these fields. No individual model excels in
all scores though the ‘‘IPCC mean model,’’ constructed by averaging the fields produced
by all the CMIP models, performs particularly well across the board. This skill is due
primarily to the individual model errors being distributed on both sides of the
observations, and to a lesser degree to the models having greater skill at simulating large-
scale features than those near the grid scale. No measure of model skill considered here is
a good predictor of the strength of cloud feedbacks under climate change. The model
climatologies, observational data sets, and metric scores are available on-line.
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1. Assessing the Skill of Weather Forecasts and
Climate Projections

[2] Global numerical weather forecasts have been
made operationally since 1979 and have improved steadily
since their advent [Kalnay et al., 1998; Simmons and
Hollingsworth, 2002]. It is possible to trace the quantitative
increase in skill over time because forecasts have been
evaluated against observations in a consistent manner for
decades. The World Meteorological Organization, for
example, defines a ‘‘standard verification system’’ (SVS)
which is a set of low-order statistics measuring forecast skill
that operational forecasting centers compute monthly and
share with one another [World Meteorological Association,
2007]. Skill is measured against both raw observations
(typically radiosondes) and against the analysis produced
after the fact for the forecast time.

[3] Weather forecast assessment is primarily focused on
the large-scale flow: only temperatures, winds, sea level
pressure, and geopotential height are part of the standard
verification system. In particular, no information is formally
exchanged between centers about forecasts of clouds,
radiation, or precipitation (though centers may verify
precipitation forecasts internally). Clouds and radiation are
neglected in part because verification is difficult: these
fields are much more spatially and temporally variable than
winds, temperature, and pressure, so measurements made at
individual points are less representative of the grid-column
mean produced by the forecast. Analyses are not useful for
verification, either, because observations of clouds and
broadband radiation are not used by operational assimilation
systems, so that cloud- and radiation-related quantities
are only loosely constrained in the resulting analyses. In
addition, though the distribution of clouds, radiation, and
precipitation may be of importance for specific applications,
it has a minor impact on the short- to medium-term
evolution of the flow on which forecast skill scores are
based.
[4] Unlike weather forecasts, the climate models used

to make long-term projections have not been subject to
uniform assessment over time. Climate model evaluation is,
in some ways, more difficult than assessing the skill of
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short-term weather forecasts because climate models solve
a boundary value problem as opposed to the initial value
problem posed in weather forecasting. This blurs the
association between time in the model and time in nature,
so model forecasts can’t be compared with observations on
a day-to-day or month-to-month basis. Furthermore, cli-
mate models are primarily used to make projections over
very long timescales (decades to centuries), and these
projections cannot be directly assessed until that time
has passed.
[5] In lieu of direct assessment of long-term trends,

climate models are evaluated according to their ability to
simulate present-day conditions and the historical record.
Evaluation typically includes comparisons against observa-
tions of the mean climate and of variability at various forced
(annual, diurnal) and unforced (El Niño-Southern Oscillation,
Madden-Julian Oscillation) timescales, and may include
the response to forcings such as volcanic eruptions and
changes in atmospheric composition. (See, as one example,
the papers describing the current version of the coupled
climate model CM 2.1 produced by the Geophysical Fluid
Dynamics Laboratory, including GFDL GAMDT [2004] and
Wittenberg et al. [2006].) Attempts to identify which aspects
(if any) of the current climate are the best predictors of
climate sensitivity or related quantities have so far been
unsuccessful, so a model’s skill in simulating the present-
day climate may not reflect accuracy in long-term projec-
tions. Nonetheless, it seems unlikely that a model that does
a poor job simulating the current climate will somehow
produce credible long-term projections. This is one moti-
vation for developing a suite of metrics for evaluating a
model’s climatology [e.g., Gleckler et al., 2007] (hereafter
GTD2007).
[6] Clouds strongly modulate the long-term evolution of

the atmosphere, and cloud feedbacks on the climate system
have remained the single largest source of uncertainty in
climate projections since the Intergovernmental Panel on
Climate Change (IPCC; see http://www.ipcc.ch) began
issuing Assessment Reports in 1990 (compare the discus-
sions of uncertainty in the First Assessment report
[Houghton et al., 1990] and the Fourth [available from
http://ipcc-wg1.ucar.edu/wg1/wg1-report.html]). For this
reason there is far greater motivation for including
the clouds in the evaluation of climate models than in
short-term forecast models. There are, however, no standard
metrics for judging model skill in simulating present-
day cloudiness or related quantities such as rainfall and
radiation.
[7] This paper proposes metrics for evaluating global

simulations of radiation, clouds, and precipitation, focusing
on measures most relevant for evaluating multiyear simu-
lations. The next section describes the metrics in detail,
including choices regarding the quantities, domain, and
summary measures, while section 3 reports the scores for
the current generation of climate models and several other
models that might be expected to perform substantially
better. We demonstrate that the best agreement with the
present-day distribution of clouds and related quantities
comes from averaging over all the available models, and
in section 4 we explore the mechanisms that lead to this
result. As we describe in section 5, we find no relationship

between skill in simulating the present-day climate and the
cloud feedback parameter that plays an important role in
determining climate sensitivity.

2. Metrics for Assessing Global Simulations of
Clouds, Radiation, and Precipitation

[8] In developing metrics for evaluating clouds in climate
models we have been guided by the desire to stay as close as
possible to the WMO standard verification system. Metrics
are defined by four choices: the physical parameter being
evaluated; the set of observations against which the models
are evaluated; the space and time domain over which
statistics are computed; and the statistical measure used.
We seek to evaluate the simulation of quantities that
are both well-observed and relevant to climate change
projections.

2.1. Quantities and Observational Data Sets

[9] We evaluate five quantities: total cloud fraction,
surface precipitation rate, and three measures of the cloud
radiative effect at the top of the atmosphere (clear-sky flux
minus total flux for longwave [LW], shortwave [SW], and
the net radiation at TOA). Global observational estimates of
each of these quantities are available from two or more
independent programs. Cloud radiative effect is included to
provide a coarse but integrated measure of the distribution
of cloud properties in space and time. For comparison we
also compute scores for the TOA all-sky LW, SW and net
fluxes, but metrics based on these fluxes are less indicative
of model skill for several reasons. Most importantly, the
spatial and temporal patterns of TOA flux are strongly
constrained by the pattern of insolation, including the strong
equator-to-pole gradient and the seasonal cycle, and all
models compute the insolation substantially correctly. (In-
solation affects the outgoing longwave flux through the
temperature response.) Secondarily, all climate models are
tuned until energy balance is achieved at the TOA in the
global, annual mean, and many [see, e.g., GFDL GAMDT,
2004] tune so that the mean SW and LW fluxes at the TOA
match observations by ERBE, which makes comparison
with those fluxes less independent.
[10] Table 1 lists the primary and secondary data sets used

for each quantity, along with the epoch for which observa-
tions are available. We assume that each set of observations
is sufficient to describe a time-stationary climatology,
though the length of the observational records varies by
parameter and data source. As we will show in the next
section, the primary and secondary observational estimates
of each field are, in every case, in better agreement with
each other than the models are with either data source, so
our results are not strongly influenced by this assumption.

2.2. Temporal and Spatial Domain

[11] Following the standard verification system, we
interpolate all quantities onto a uniform 2.5 � 2.5 degree
grid. We compute the mean annual cycle by separately
averaging each month over the observational record to
obtain 12 maps, one for each month, of each quantity. We
have not decomposed the globe into subdomains as the
WMO Standard Verification System does, but this might
be easily done.
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2.3. Statistical Summaries

[12] The standard verification system used by weather
forecasting centers comprises root mean square (RMS)
error, mean error (bias), and anomaly correlation for each
variable, computed separately for each forecast and aver-
aged over each month. By analogy to these scores we
compute five statistical summaries: RMS error e, mean bias
�e, centered RMS error e0, the ratio of the standard deviations
s, and the correlation r, defined so that bias is positive when
model values exceed those observed and s > 1 when model
values are more variable than observed. (We replace anom-
aly correlation with correlation because the former requires
the climatological value for the space/time domain to be
removed but, in our case, climatology is exactly the signal
we seek to evaluate.) The five quantities are related by

e2 ¼ �e2 þ e02

¼ �e2 þ s2
o 1þ s2 � 2sr
� �

ð1Þ

where so refers to the standard deviation of the observed
field in the time/space domain. The geometric relationships
in form the basis of the ‘‘Taylor diagrams’’ [Taylor, 2001]
used to visualize results in the next section. We compute
statistics over the twelve monthly mean maps, weighting
each column by its surface area, to assess the simulation of
both the annual cycle and spatial variability [cf. GTD2007].

3. How Well Does the Current Generation of
Climate Models Simulate Clouds, Radiation, and
Precipitation?

3.1. Models Assessed in This Study

[13] We compute statistics for the set of climate
models that participated in the World Climate Research
Programme’s (WCRP’s) Coupled Model Intercomparison
Project phase 3 (CMIP3) multimodel data set used to
prepare the IPCC Fourth Assessment (IPCC AR4; see
http://ipcc-wg1.ucar.edu/wg1/wg1-report.html). Monthly
mean values were obtained from the archives maintained
by the Project for Climate Model Diagnosis and Intercom-
parison (PCMDI) and described by Meehl et al. [2007]. We
evaluate the models’ performance from 1979 to 1999 in two
sets of runs: one in which the atmospheric models are
coupled to dynamical ocean models that compute the sea
surface temperature (20th century runs, for which 22 models
provided output) and one in which the sea surface temper-
ature is specified (AMIP runs, 12 of the 22 models). The
models are listed in Table 2 and described in more detail on
the PCMDI web site (http://www-pcmdi.llnl.gov/ipcc/

model_documentation/ipcc_model_documentation.php).
Many models submitted ensembles of simulations; for these
we use the ensemble mean averaged over each month.
(Results in section 4 indicate that model performance does
not depend strongly on ensemble size.)We have excluded
the BCC CM1 because, as of this writing, the fields in the
archives were so different from the observations as to
dominate our results. Not all models provided data for
every field.
[14] In addition to the models participating in CMIP3/

AR4, we compute statistics for four models that might be
expected to behave substantially differently. One is the
‘‘superparameterized’’ version of the NCAR Community
Atmosphere Model [Khairoutdinov et al., 2005] in which
the physical parameterizations are replaced by a copy of a
two-dimensional fine-scale cloud resolving model in each
grid cell. The Super-CAM has been run for 13 years (1986
to 1999) using AMIP-specified sea surface temperatures
[Khairoutdinov et al., 2008]. The second is the ‘‘IPCC mean
model’’ computed by averaging the monthly mean fields
provided by each model (using the single ensemble mean
for models that provided ensembles), computed separately
for the AMIP and 20th century ensembles. We also include
12-h forecasts created as part of the 40-year reanalysis
product by the European Centre for Medium-Range Weather
Forecasts (ERA-40, see Uppala et al. [2005]). Over much
of the globe wind, temperature, and humidity fields in these
forecasts are tightly constrained by observations during the
analysis cycle. These fields are therefore expected to be
much closer to those observed than are the free-running
climate models, so errors in the cloud, radiation, and
precipitation fields can be attributed to errors in the under-
lying cloud or boundary layer parameterizations to a much
greater extent than in any of the other models. Finally, we
include a run of a current version (Cycle 32R1) of the
ECMWF forecast model run from 1 December 1991 to
1 December 2001 using specified sea surface temperatures
(i.e., as an AMIP simulation). This model has substantially
higher resolution than most climate models (T159 with 91
levels) but has been developed for weather forecasting
applications rather than climate projections.
[15] As with the observations, we compute mean monthly

climatologies of radiative fluxes, cloud radiative effect,
cloud fraction, and surface precipitation rate by averaging
each month over the 20-year period (or whatever period is
available).

3.2. Skill Measures

[16] Figure 1 provides a qualitative overview of the
relative skill of each model in simulating the present-day

Table 1. Quantities Used to Evaluate Clouds, Radiation, and Precipitation in Climate Model Simulations, and the Observations Against

Which the Models are Compared

Quantity Observational Data Set Epoch Alternative Observations Epoch

Top-of-atmosphere cloud
radiative forcing (LW, SW, net)

CERES ES-4
(‘‘ERBE-like’’)

Mar 2000 to Dec 2005 ERBE S-4G Nov 1984 to Feb 1990

Cloud fraction ISCCP D2 Jul 1983 to Dec 2004 MODIS/Terra Collection 5 Mar 2000 to Dec 2006
Surface precipitation rate GPCP v2 Jan 1979 to Apr 2005 CMAP Jan 1979 to June 2002
Top-of-atmosphere radiative
flux(LW, SW, net)

CERES ES-4
(‘‘ERBE-like’’)

Mar 2000 to Dec 2005 ERBE S-4G Nov 1984 to Feb 1990
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annual cycle and spatial distribution of clouds, radiation,
and surface precipitation. Each row of this ‘‘portrait dia-
gram’’ [see GTD2007] corresponds to a skill measure (e.g.,
RMS errors in top-of-atmosphere cloud radiative effect) and
each column to a model run; AMIP and 20th century runs of
the same model have been grouped together. The upper left
and lower right triangles in each square show performance
as measured against the primary and secondary observations
respectively. We convert the five statistics we have calcu-
lated to quantities that increase monotonically with model
error by showing e, e0, |�e|, 1�r, |1�s|. These error measures
are then expressed as a fractional deviation from the mean
value of that error measure, where the mean is computed
across all the CMIP3 models (including the mean model).
That is, for a given error measure E computed by evaluating
field f against model m using observational data set r the
fractional error is defined by

Emfr ¼
Emfr � Efr

Efr

ð2Þ

Normalization by Efr is possible because mean errors are
significantly larger than 0 in the set of metrics considered
here. In Figure 1, values of E0

mfr < 0 (i.e., models with
smaller errors than the mean error) are shaded in blue
and values of E0

mfr > 0 in red. The black horizontal

line separates the metrics computed for cloud fraction,
precipitation rate, and cloud radiative effect from those
computed for top-of-atmosphere fluxes.
[17] Several conclusions regarding the CMIP3 models

can be drawn from Figure 1. First, although some models
agree well with observations in many aspects of the simu-
lation, all models have their weak areas, as indicated by
areas of reddish color in every column. Second, in almost all
cases, the IPCC mean model is closer to the observations
than any of the individual models. GTD2007 note both of
these behaviors across a much wider range of metrics in the
20th century simulations. In most cases the relative perfor-
mance of individual models across this set of metrics does
not depend strongly on the verification data set (i.e., the two
triangles in each box are typically close in shade), implying
that all simulations of clouds, radiation, and precipitation
differ markedly from the observations regardless of the data
set used to define climatology. Finally, we note that a
model’s relative performance with respect to any given
metric is not especially sensitive to whether the model is
run with specified sea surface temperatures or using a
dynamic ocean and 20th century forcings.
[18] The performance of the alternative models provide a

useful point of comparison to the results from the CMIP3
climate models. The results from ECMWF reflect, in part,
the effects of model development over time. ERA-40 was

Table 2. Models for Which Metrics Have Been Computeda

Institution Country Model Name Ensemble Size - AMIP Ensemble Size - 20th C

Bjerknes Centre for Climate Research Norway BCM 2.0 1
National Center for Atmospheric Research USA CCSM 3 1 4

PCM 1 2
Canadian Centre for Climate Modeling
& Analysis

Canada CGCM 3.1 (T47) 5

Canadian Centre for Climate Modeling
& Analysis

Canada CGCM 3.1(T63) 1

Météo-France/Centre National
de Recherches Météorologiques

France CNRM CM3 1 1

CSIRO Atmospheric Research Australia CSIRO Mk3.0 3
Max Planck Institute for Meteorology Germany ECHAM5/MPI-OM 3 3
Meteorological Institute of the University
of Bonn, Meteorological Research
Institute of KMA

Germany, Korea ECHO-G 5

LASG/Institute of Atmospheric Physics China FGOALS g1.0 3 3
NOAA/Geophysical Fluid Dynamics Laboratory USA GFDL CM 2.0 3

GFDL CM 2.1 3
NASA/Goddard Institute for Space Studies USA GISS AOM 2

GISS EH 5
GISS ER 4 9

Institute for Numerical Mathematics Russia INM CM 3.0 1 1
Institut Pierre Simon Laplace France IPSL CM 4 6 2
Center for Climate System Research,
National Institute for Environmental
Studies, and Frontier Research Center
for Global Change

Japan MIROC 3.2 (hires) 1 1

MIROC 3.2 (medres) 3 3
Meteorological Research Institute Japan MRI CGCM 2.3.2 1 5
Hadley Centre for Climate Prediction and
Research/Met Office

UK UKMO HadCM3 2

UKMO HadGem3 1 2
(None) ‘‘IPCC mean model’’ 12 22
Colorado State University USA SuperCAM (1986–2000) 1
European Centre for Medium-range Weather Forecasts EU ERA-40 1

ECMWF C32R1 1
aWhere ensembles have been provided the monthly average is computed across all members of the ensemble. The ‘‘IPCC mean model’’ is the average of

the monthly climatologies for each model. Where centers have submitted more than one model the institution and country are listed only for the first model.
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Figure 1. Portrait diagram showing the relative error in global model simulations of the annual cycle of
top-of-atmosphere cloud effect, cloud fraction, surface precipitation rate, and (below the black line) top-
of-atmosphere radiative fluxes. Each column corresponds to a model run (asterisks denote fixed-SST
AMIP runs) and each column one of five statistical measures of agreement in one of eight physical
parameters. White squares indicate that a model’s score for a given metric is equal to the mean of that
score across all the CMIP3 models (including the ‘‘mean model’’); darker shades of blue indicate better-
than-average scores and shades of red worse-than-average scores. Within each square the upper-left
triangle denotes agreement with the primary observational data set and the lower-right triangle agreement
with the alternate data set. Gray indicates that no data are available.
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produced with a model introduced in October 1999, using
short forecasts from analyses; C32R1 was introduced in
September 2006 and, for the data provided here, was run in
a mode similar to climate models, so that day-to-day
dynamics and thermodynamics are not constrained by
observations. Nonetheless, errors in most cloud, radiation,
and precipitation quantities are substantially smaller in
C32R1 than in ERA-40. (Errors in cloud fraction are
comparable.) It is also possible that some errors in ERA-
40 arise from imbalances in the analyses that the model
removes in the first few hours of the forecast. The super-
parameterized CAM, in contrast, does not perform particu-
larly well on these metrics for clouds, radiation, and
precipitation, despite the fact that many other aspects of
simulations with the superparameterized CAM are improved
over the standard version of the model [Khairoutdinov
et al., 2008]. This may reflect the relatively short amount
of time and limited resources that have been devoted to
tuning the model to the present-day climate. We have
omitted results for cloud fraction because, unlike every
other model in our sample, cloud fraction in the super-
parameterized CAM does not affect radiative fluxes, which
are calculated using the exact amount of condensate in each
column in the cloud-resolving model. Comparisons using
the ISCCP simulator [Klein and Jakob, 1999] are in
reasonable agreement with observations [Khairoutdinov et
al., 2008], but these estimates incorporate information about
the ISCCP cloud detection method, making them difficult to
compare to the rest of the models.
[19] A more quantitative view of the agreement between

the observations and model simulations may be obtained
from the Taylor diagrams in Figure 2, which show, for each
data set, the correlation with the observations and the
standard deviation (i.e., the terms r and s that make up
the centered RMS error e02 as shown in). The centered RMS
error is indicated by the distance to the intersection of the
dashed line and the horizontal axis with units and measures
identical to the x axis.We have modified the diagrams to
show the bias �e with symbols whose size can be measured
against the radial axis. Metrics for each quantity are
computed with respect to the primary data set listed in
Table 1, and differences between the primary and alternative
observational estimates are shown in red. A data set that
agreed perfectly with the observations (i.e., had s = r = 1 =
e0 = �e = 0, and hence e = 0) would be a point on the
horizontal axis where it intersected the dashed line. Mod-
els may have the same correlation with observational data

set while being poorly correlated with each other, so points
which are close to one another on the Taylor diagram
should be understood as being equally far from the
observational data set rather than necessarily close to
one another.
[20] The Taylor diagrams confirm several conclusions

drawn from the portrait diagram, namely that the mean
model performs better on essentially every count than do
any of the individual models that comprise it, and that
model simulations of clouds, radiation, and precipitation are
not systematically better in either the AMIP or 20th century
simulations. The Taylor diagrams also demonstrate that the
alternative observational data set is in better agreement with
the primary observations than are any of the models. The
agreement is notable because, for any given quantity, the
two observations may be derived from different instruments
during different, even non-overlapping, epochs. This indi-
cates that model simulations disagree with the observational
record so much that observational uncertainty does not limit
the ability to gauge model improvement. Simulations of
top-of-atmosphere radiative fluxes Figure 3 are uniformly in
better agreement with observations than simulations of
cloud radiative effect for the reasons discussed in section 2.
[21] Taylor diagrams for the net, longwave, and short-

wave fluxes are shown for comparison in Figure 3. As we
noted in section 2, the spatial and temporal structure of
these fields is dominated by distribution of insolation,
which is well-modeled.

4. Why Does the Mean Model Perform so Well?

[22] As we noted in the last section, the best agreement in
the predictions of clouds, radiation, and precipitation is
achieved by the IPCC mean model, which is constructed
by averaging each field during each month across all models
in the ensemble. GTD2007 note the same behavior across a
much wider range of physical variables. There are at least
two mechanisms that might lead to this result. One possi-
bility is that models do a better job simulating large-scale,
slowly varying features than those nearer the grid scale at
monthly time resolution. High scores for the mean model
fields might then arise because the mean model fields are
smoother in space and time than any of the individual
models, leaving the large-scale agreement but removing
the small-scale errors. The second possibility is that the
systematic errors associated with individual models are, to
some extent, distributed around no error, so that averaging

Figure 2. Summary Taylor diagrams showing errors in top-of-atmosphere radiative fluxes, top-of-atmosphere cloud
forcing, cloud fraction, and surface precipitation rate computed over the mean annual cycle. Following Taylor [2001], the
radial distance from the origin denotes the standard deviation of each data set (the primary observations are shown as a
dashed radius) and the angular distance from the horizontal denotes the correlation coefficient r between each data set and
the primary observations. The centered RMS error is indicated by the distance to the intersection of the dashed line and the
horizontal axis with units and magnitude indicated by the radial axis. Here the size of the symbol (diameter for circles, edge
length for squares) indicates the mean bias and a yellow outline indicates a negative bias. Each diagram includes both the
AMIP (blue) and 20th century (gray) runs; where a model has submitted both runs the points are joined by a line. The IPCC
mean model, computed separately for the AMIP and 20th century ensembles, is shown as a square, while the ECMWF
models are shown in pink (ERA40) and yellow (C32R1). The superparameterized CAM is shown in green, and all three
versions of the NCAR CAM are denoted with asterisks. Metrics for each quantity are computed with respect to the primary
data set listed in Table 1; differences between the primary and secondary observational estimates are shown in red.

D14209 PINCUS ET AL.: METRICS FOR CLOUDS, RADIATION PRECIPITATION

6 of 10

D14209



Figure 2

D14209 PINCUS ET AL.: METRICS FOR CLOUDS, RADIATION PRECIPITATION

7 of 10

D14209



across a range of models reduces those systematic errors.
Here we attempt to distinguish the degree to which each of
these mechanisms is responsible for the success of the IPCC

mean model by comparing metrics computed for a single
model run with those computed a) when the model fields
have been smoothed and b) for fields derived from a range
of ensembles.
[23] We use a 20th century run from the MRI CGCM

ensemble as a baseline since the ensemble is of intermediate
size (five members) and, in the mean, performs reasonably
well on most metrics. We compare the skill of this single
model run to (1) the four other individual runs from the
MRI CGCM ensemble; (2) the mean of the MRI CGCM
ensemble; (3) the same individual run of the MRI CGCM
after spatial smoothing; (4) a set of five member ensembles
consisting of our baseline run and four other individual runs
chosen at random from all individual runs in the IPCC
ensemble; and (5) the IPCC mean model. We compute the
spatially smoothed version of the baseline run (item 3) by
replacing the climatological value in each grid cell with the
running mean of that value and its four closest neighbors,
then iterating the process. We convert metric scores to errors
as described in section 3, then normalize each error by the
error in the baseline run (i.e., ~Emf1 = Emf1/Ebf1, where b
indicates the baseline run and 1 denotes the primary
observation data set).
[24] Figure 4 shows the distribution of relative errors in

all 25 metrics for each of these four scenarios. Errors are
comparable in each of the members of the MRI CGCM
ensemble: relative errors across all metrics and all four
alternate ensemble members range from 89–119%, with a
mean of 99.8%. The ensemble mean, constructed by aver-
aging the monthly map of each quantity across ensemble
members before computing the metrics, performs very
slightly better (range of 92–107% and mean of 99%).
Spatial smoothing improves the metric scores modestly
but measurably. The third column of Figure 4 shows the
distribution of relative errors when each field has undergone
three iterations of spatial smoothing, which results in a
mean relative error of 89%. (The mean relative error
decreases for each of the first four iterations of smoothing;
the value is nearly the same after four or five iterations.)
Finally, we compute scores for a set of five multimodel
ensembles containing five members each (to match the size
of the MRI CGCM ensemble) but containing, in addition to
the baseline run, four individual runs chosen randomly from
the full set submitted to CMIP3. Excepting the mean bias
for shortwave cloud radiative effect and surface precipita-
tion (two scores on which the baseline run does particularly
well), the multimodel ensembles are in substantially better
agreement with the observations than any version of the
single GCM: the mean relative error across all metrics is
67%, nearly as small as the mean relative error of the full
IPCC ensemble (63%; see the last column of Figure 4).
[25] We infer that the IPCC mean model’s good agreement

with observations is due to both spatial smoothing and

Figure 3. Taylor diagrams for net, longwave, and short-
wave flux components at the top of the atmosphere
evaluated against CERES. The color coding of the model
points follows Figure 2, top-of-at. Agreement with the
observations is much better than in Figure 2 because
temporal and spatial variations in the TOA flux field are
dominated by the well-understood pattern of insolation.
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compensating systematic errors, but that the latter is more
important.

5. Relating Cloud Feedbacks to Present-Day
Simulations of Clouds, Radiation, and Precipitation

[26] As we noted in Section 1, the most significant
application of climate models is for projections of long-
term climate change, for which climate sensitivity is often
used as a proxy. Much of the diversity in estimates of
climate sensitivity, in turn, arises from cloud-related feed-
backs on climate change. In particular, much of the range in
climate sensitivity in present-day models can be traced to
differences in how shallow clouds in the tropics respond to
climate change [Bony and Dufresne, 2005]. It would there-
fore be intriguing if there were a systematic relationship in
this set of models between present-day skill in predicting
cloud fields and some measure of how clouds respond to a
changing climate.
[27] We have searched for an association by linearly

regressing each of the metrics shown in Figure 1 with
estimates of the cloud feedback parameter made by Soden
and Held [2006] and find no such relationships. Linear
correlation coefficients vary from 0 to a maximum of 0.53,

indicating that none of our metrics for evaluating the fidelity
of present-day simulations of clouds and radiation is a good
predictor of cloud feedbacks under climate change in this
set of models. We have also inspected the resulting scatter-
plots but find no evidence for any nonlinear relationships.

6. Conclusions

[28] Though climate and weather forecasting models are
structurally similar (and, in at least one case, even the same
code), the culture of assessment in the two communities is
quite different. To some degree this reflects the fact that
weather forecasts can be verified directly in a way that is
impossible for climate projections. Nonetheless, it is strik-
ing that weather forecasting centers can point to almost two
decades worth of improving forecast skill scores as evi-
dence that investment in forecasting leads to better fore-
casts, while the climate modeling community has a difficult
time making a similar case quantitatively. We suggest that
this argues for the routine calculation and dissemination of
performance metrics for climate models. Such metrics might
make it easier to defuse criticism based, for example, on the
fact that the range of climate sensitivity reported in the
IPCC assessments has not narrowed over time by demon-
strating that the models have gotten better at simulating the
present-day climate. As we noted in Section 1, though
agreement with present-day observations does not guarantee
that projections of climate change will be correct, such
agreement seems desirable.
[29] We expect that comprehensive evaluation of the

simulation of present clouds, radiation, and precipitation
could require more metrics than are presented here. To assist
in the development of additional metrics we have made
available the composite annual cycles for each model run
and for the observational data sets used in this study, along
with the metrics themselves. These may be obtained at
http://www.esrl.noaa.gov/psd/data/gridded/cmip3-clouds-
rad-precip. We expect, however, that some useful metrics
cannot be computed using only the composite annual cycle.
This is perhaps most true for precipitation, since rainfall rate
varies so dramatically in space and time and since, in many
cases, it is the extreme events which matter most. We expect
that there may be some utility in adapting quantitative
precipitation forecast skill scores [see e.g., Wilks, 1995],
which account for the entire distribution of rainfall rates, to
the assessment of climate models; this will necessitate
changes in the data archiving strategy at most climate
modeling centers.
[30] Figures 1 and 2 show that the two estimates of top-

of-atmosphere cloud radiative effect and fluxes we have
used (CERES ES-4 ‘‘ERBE-like’’ and ERBE S-4G) are in
better agreement with each other than with any of the
models (including the mean model), indicating that obser-
vational uncertainty does not limit our ability to gauge
model performance. This may change, however, with the
advent of new CERES data products. These estimates begin
with the same measurements as the ES-4 products but use
substantially improved algorithms including better scene
identification, a wider diversity of angular models, and
more accurate time interpolation. At this time it is not
possible to use these products to compute cloud radiative
effect: only the CERES SRBAVG products are available as

Figure 4. Distribution of errors across all metrics, relative
to a single run of the MRI CGCM, for fields which have
been averaged or spatially smoothed. The median of each
distribution is shown as a horizontal bar and the interquartile
range as a box. The whiskers extend to 1.5 times the
interquartile range, with values beyond that marked with
individual points. The sample size varies from column to
column according to the number of model realizations used.
All members of the MRI CGCM ensemble (the first
column) show comparable errors, while the ensemble mean
performs slightly better than the individual runs. Spatial
smoothing improves many metric scores, but the most
dramatic improvements come from averaging across multi-
model ensembles, even when the ensemble size is no larger
than the MRI CGCM ensemble.
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yet, and these contain significant amounts of missing values
for clear-sky fluxes on a monthly basis because the tests for
clear sky are so stringent. Data sets that use additional
information to estimate the clear-sky fluxes and constrain
the top-of-atmosphere radiation budget to be nearly in
balance (the AVG, SYN, and especially the EBAF datasets)
are being released just as this article goes to press. These
data are expected to be substantially more accurate than
ERBE, so quantities may well differ from the ERBE
estimates by amounts as large as the difference between
ERBE and the current generation of models. Nonetheless,
we anticipate that model performance with respect to
radiation will be best judged against these new products
when they become available.
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